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Abstract--Experiments were performed in atmospheric vertical air-water flows, for void fractions 
between 0.25 and 0.75 (cross-sectional averages) and superficial liquid velocities of 1.3, 1.7 and 2.1 
m/s. Local values of void fraction and bubble velocity as well as the bubble diameter were measured 
by means of a resistivity probe technique. Reliable values were obtained for the local void fraction 
over the entire range 0 _< a _< 1. The void fraction profiles appeared to have a local maximum at the 
pipe center, local maxima close to the wall were obviously absent. The resistivity probes are shown to 
measure the velocity of the interface between the conducting and nonconducting phases, which equals 
the gas velocity only for low void fractions. The measured data for void fraction and bubble velocity 
were correlated by means of power law distribution functions, with exponents given by a function of 
the cross-sectionally averaged void fraction. The Sauter mean diameters for the bubble size spectra 
found, agree reasonably well with diameters predicted by a theoretical model based on the energy 
dissipation in the flow. 

1. I N T R O D U C T I O N  

Various measuring methods were considered at the outset, taking account of related 
experience in the author's laboratory and of the relevant literature, such as the review on 
two-phase flow measuring techniques given by Jones & Delhaye (1976). One of the 
requirements for a suitable measuring method would be the absence of obstructions in the 
flow channel. Two methods meet this requirement, viz. the "y-ray attenuation technique and 
laser-Doppler anemometry. However, the former yields only a chord-averaged value of the 
void fraction, while the latter is so far only applicable in cases where the discrete phase is 
sufficiently dilute, i.e. for low void fractions. In view of the intention to measure local 
variables in flows with void fractions possibly ranging from zero to unity it was inevitable to 
use a probe technique. An evaluation of potential probe techniques resulted in the selection 
of the electrical resistivity probe because of the relatively simple equipment and the positive 
results for conducting liquids reported in the literature. 

The first references found on the use of the resistivity probe technique were Neal (1963), 
for measurements in mercury-nitrogen flow, and Nassos (1963), for air-water mixtures. 
Since that time a number of investigators have reported on the use of such probes for the 
measurement of local properties in gas-liquid flows. Some measurements were limited to 
void fractions, see, e.g. Malnes (1966), and Zwahr (1976); others, like Neal & Bankoff 
(1963), Herringe & Davis (1974, 1976), Serizawa et al. (1975) and Thang & Davis (1979), 
have used two probes in series, combined with a correlation technique, to measure bubble 
sizes and bubble velocities. In the present investigation the technique was employed to 
determine void fraction, bubble velocity and bubble size. 

In addition, chord-average void fractions were determined by the y-ray technique, while 
temperatures and pressures were measured using conventional equipment. 

2. RESISTIVITY PROBE M E A S U R I N G  T E C H N I Q U E S  

2.1. Measuring principle 
The principle of two-phase flow measurements by resistivity probe is based upon the 

difference in conductivity between the gaseous and liquid phases. In an air-water flow the air 
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can be considered as electrically insulating, whereas demineralized water has a conductivity 
of about 10 uS/re. When the sensor is in contact with the continuous liquid the circuit is 
closed, whereas a bubble wil] break the circuit. Thus the probe behaves in principle like a 
switch, yielding a two-state signal. Such a signal shows a nearly immediate response to water 
contact with the probe, but a delayed response to bubble contact, due to the required 
dewetting time of the probe tip. Minimization of this delay, i.e. approximation of a square 
wave shape, is desirable for further processing, and may be obtained by proper design of the 
probe tip. However, to obtain a true square wave electronic signal processing is also 
required. 

The following three variables can be measured: 

- - the  void fraction a, by determination of the presence of the gas phase 
- - the  bubble size distribution, by classification of the square wave lengths 
- - the  velocity of the bubbles, from the delay time of the bubbles between two probes. 

The large amount of data to be processed combined with the desirability of local processing 
resulted in the decision to use a dedicated microprocessor. This microcomputer system and 
the software used have been described in detail by Korving (l 979). 

2.2. Probe design 
The design proposed by Zwahr (1976) and shown in figure 1 was used to obtain rapid 

dewetting of the probe tip. It consists of a platinum wire of about 30 um diameter, insulated 
by glass except at the front end. The tip of the probe has to be sharp in order to achieve 
immediate piercing with little deformation of the bubble at the moment of contact. As the 
contact area consists only of the cross section of the wire, rapid dewetting occurs as the 
bubble is touched. 

Two separate sensor tips are used for determination of bubble velocities. As shown in 
figure 1, the two sensors have a common stainless steel sheath to maintain a well defined 
sensor distance and for easy handling. 

Preliminary experiments indicated that the distance between the two probe tips should 
be less than 20 mm to avoid the loss of correlation between the signals due to turbulence. Nor 
should the distance be too small, as in that case determination of the time delay becomes 
inaccurate. The most suitable distance between the tips was found to be about 10 mm. 

2.3. Signal conditioning and processing 
Two consecutive steps should be distinguished, viz. signal conditioning by conversion of 

the analog signal to a square wave form, and signal processing by sampling of this converted 
signal. 

In the first step all the information contained in the original signal must be converted into 
information suitable for subsequent handling by a digital microprocessor. In the course of 
the experiments it was found necessary to apply several improvements to this step in order to 
achieve the desired reliability and accuracy of the results. At first, use was made of a single 
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Figure 1. Probe geometry. 
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trigger level, i.e. an electronic switch was triggered if the voltage reached a value above a 
preset level. This approach has the inherent disadvantage that signals which do not reach the 
trigger voltage go undetected. Hence the level must be set as close to the signal voltage as 
possible, in order to minimize the influence of the dewetting time and to take account of 
small bubbles. However, the trigger level is now at the wrong side when high void fractions 
are measured. The problem is further enhanced in practice by shifts in the level of the signal 
voltage due to fouling of the probe tips and variations in the conductivity of the water. 

These disadvantages are avoided by first sampling the signal by an analog-digital 
converter and then comparing the samples with two self-adjusting trigger levels. The 
implementation of this approach is illustrated in the block diagram and condition table of 
figure 2. There are four registers, which contain the samples n, n-1 and a current minimum 
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Figure 2. Block scheme and condition table of A / D  signal conversion. 
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and maximum value. Sample n is compared with sample n-1 as well as with the minimum 
and maximum values (cf. the condition table). If either of these values is exceeded one or 
both limits are adjusted according to the last measured value n, and/or a set or reset of the 
flip--flop at the output occurs, resulting in the desired square wave signal. Spurious 
triggering due to noise is avoided by setting an adjustable margin of x bits with respect to 
both limits. To match the high conversion speed of the A/D converter (sample frequency of 
250 kHz), the subsequent arithmetic operations are carried out by TTL hardware, driven by 
the clock of the A/D converter. All operations can be executed within the conversion time of 
the A/D converter, permitting simultaneous processing. A more detailed description of the 
conditioning operation is given by Korving (1980). 

Subsequent digital processing of the resulting square wave signal consists of sampling 
the square wave form at a frequency adjustable between 1 and 16 kHz. The maximum value 
of this frequency is more or less prescribed by the hard- and software capabilities of the 
processing equipment. The sampling results in a number of zero's and one's representing the 
square wave in digital form. 

2.4. Applications 
2.4.1. Void fraction. The local void fraction, which is measured by the lower of the two 

sensor tips, is defined as a time average of the concentration c by 

lim 1 f r  = - -  c ( x ,  t )  dt OL 
r ~  T Jo 

[1] 

in which c as a function of place x and time t equals one if the phase at the probe tip is gas and 
zero if the tip is in the liquid phase. As the signal is given in discrete digital form, [ 1 ] can be 
written as 

1 N 

= ~ ~.= a(i) [2] 

in which N is the total number of samples and a(i) the number of samples indicating the 
presence of gas at the probe tip, with both N and a(i) referring to the sampling time T. 

2.4.2. Bubble velocity. The bubble velocity is determined from the signals of two probes 
placed in series (cf. figure 3). A bubble which contacts the first probe will in general 
subsequently make contact with the second probe: the time delay between these two contact 
signals is a measure for the velocity of the bubble. It is of course possible that a bubble is only 
pierced by one of the probes, this error source should not cause any problems provided this 
stochastic process is observed over an adequate length of time. A correlation technique will 
be required to determine the most probable time delay between the two stochastic signals. 
The cross-correlation function of the two probe signals a and b is defined by 

F,b(X, r) = lim 1 f o r  r--= --T a(x, t) b(x  + d, t + r) dt, [3] 
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Figure 3. Measurement of bubble velocity. 
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where d is the distance between the probes and r is the time delay. The maximum of the 
correlation function yields the most probable time delay to, from which the bubble velocity is 
determined as 

uc = d/ro. [4] 

In the case of binary signals, i.e. when the signals have a resolution of one bit, the correlation 
function is changed into a polarity correlation function, defined by [cf. e.g. Veltman et al. 
(1961)] 

R.b(x,r) = lim f r s g n a ( x  ' t) sgn b(x + d, t + r)  dt, 
T ~ J  0 

[51 

where the signum function is defined as sgn y = 1 if y >_ 0 and sgn y = - 1 if y < 0. For a 
sampled signal between 0 and 1 the signum function is changed into the exclusive-or function 
(9 and [5] is written as 

N 

Rab(X,j) = ~ a(x,  i) • b (x  + d, i + j )  [61 
i-I 

a n d j  = 1 (1)M, 
where N = number of samples, M = number of shifts, and • is defined by 

a b a O b  

0 0 1 
0 1 0 
1 0 0 

1 1 1 

Preliminary experiments have shown that for the range of velocities and bubble sizes of 
interest a good correlation is obtained for N = 1000 and M = 50. 

Figure 4 shows an example of a polarity correlation for two identical signals a and b, 
sampled with a sampling period t* indicated in figure 3. These signals are shifted relative to 
each other and the exclusive-or operation is applied, yielding the expected triangular shaped 
cross-correlation function, In case of nonidentical signals, i.e. when the width of the blocks 
differs, the top of the correlation function is broadened (cf. Serizawa et al. 1975), which may 
generate difficulties in determining r0. In practice, however, the correlation functions show a 
single maximum, the place of which is given by the number j.  It can be shown (Van der Welle 

1983) that the error in j is inversely proportional to the number of samples within the time 
delay to; i.a.v, if the sampling frequency is sufficiently large, the error in the measured 
velocity can be kept sufficiently low. 

2.4.3. Bubble diameter. The chord length I of a bubble follows from the block length of 
the square wave signal, i.e. from the number of continuous zero samples n, and from the 
bubble velocity uG, obtained from [4]: 

l =  hUG 
f , [7] 

wheref is  the sampling frequency. 
Bubble size data are usually presented in graphical form by means of a distribution 

function, from which a mean diameter of some sort and a measure of the dispersion of the 
spectrum can then be derived. The simplest distribution function is a histogram or 



322 R. VAN DER WELLE 

a b a • b 

0 0 1 
0 0 1 

0 0 1 

I 0 0 

1 0 0 

1 0 0 

0 I 0 

0 i 0 

0 1 0 

J=l R=3 

a b aeb 

0 0 1 
0 0 1 

0 0 i 

1 0 0 
1 0 0 

1 I 1 

0 1 0 

0 1 0 

0 0 1 

j =2 R=5 

a b 

0 0 
0 0 

0 0 

1 0 

i I 

1 1 

0 1 

0 0 

0 0 

j=3 

aeb 

1 
1 

I 

0 

I 
1 

0 

1 

1 

R=-7 

a b a@ b 

0 0 i 

0 0 1 

0 0 l 

i I 1 

i 1 I 
I 1 1 

0 0 I 

0 0 1 

0 0 i 

j =4 R=9 

a b a@-b 

0 0 1 
0 0 1 

0 1 0 

1 1 1 

1 1 1 

1 0 0 

0 0 1 

0 0 I 

0 0 I 

j =5 R=7 

a b a @b 

0 0 1 

0 I 0 

0 I 0 

I 1 I 

I 0 0 

i 0 0 

0 0 1 
0 0 1 

0 0 1 

j =6 R=5 

a b ae b 

0 I 0 

0 i 0 
0 i 0 

i 0 0 
1 0 0 

i 0 0 

0 0 I 

0 0 i 

0 0 1 

j =7 R=3 

I0 

8 * 

Rab * * * 
6 *** 

4 ***** 

2 * * * * * * *  
* * * * * * *  

0 

1 2 3 4 5 6 7 8  

~j 

Figure 4. Sample of ~larity correlation. 

N = 9 

M = 7 

T O = 4t 2 

incremental frequency distribution. This function can be transformed into a frequency 
distribution of real chord lengths with the aid of [7]. 

The transformation of a chord length into a bubble diameter remains problematic, as a 
certain chord length can correspond to a small chord in a large bubble or a large chord in a 
small bubble, while moreover the velocity of the bubbles may differ. This problem can be 
overcome if the following assumptions, according to Thang & Davis (1979), are made: 

- - the  bubbles are spherical 
- - the  probe has equal probability to pierce any point on the projected frontal area of the 

bubbles 
- -a l l  bubbles travel in the same direction with the same average velocity uc. 

If the probability density function of measured chord lengths is denoted by g(l) and that of 
the detected bubble diameters b y f ( d ) ,  it is shown by Herringe & Davis (1976) that 

f ( d )  = ~/2 ( g ( l )  - l g ' ( l ) ) .  [81 
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The use of this equation to obtain the functionf (d) requires differentiation of function g(/), 
which can cause substantial errors, due to inaccuracies in the experimentally determined 
distribution g(l). It is shown by Van der Welle (1983), that the sampling frequency used is 
too low to obtain accurate distribution functions. On the other hand, some investigators 
report that bubbles which are not centrally pierced will tend to displace their center in such a 
way that anyhow the diameter is measured (cf. Buchholz et al. 1979). This point of view 
makes the analysis of Herringe and Davis, based on the second one of the above assumptions, 
rather doubtful. Hence it is assumed for the present case that the bubble diameter equals the 
measured chord length, so t h a t f  (d) ~ g(1). 

Integration of the probability density function yields a cumulative distribution function 
of bubble diameters, representing the percentage of the total number of measured bubbles 
whose diameter is below a given value, and thus forming another basis for defining a mean 
bubble diameter. Various definitions of mean bubble diameter are found in literature and are 
discussed in the Appendix. 

A measure of the spread in measured diameters around the median diameter dso is given 
by the geometric standard deviation sg, defined as Sg = log (ds4/dso), or by the dispersion of 
the distribution, defined as the quotient d84/d5o. 

It must be noted here, that the distribution functions and mean diameters obtained are 
only representative of detected bubbles. The spectrum of detected bubbles will in general not 
be representative of the spectrum of all existing bubbles, as the probability for the probe to 
detect a bubble is inversely proportional to the cross-sectional area of the bubble, i.e. to d~. If 
we denote the probability density function of the detected bubbles by f ( d )  and that of all 
bubbles with centers passing through a unit area of the flow cross section byj(d),  it is shown 
by Herringe & Davis (1976) that 

, f ( d )  
j ( d )  = tc ~ , [9] 

db 

where 

4 n b 
k ~ D _ _  

in which nb is the number of detected bubbles and Nb is the total number of bubbles passing 
through a unit area. The value of k is not very important, as it is a constant and thus only 
influences the magnitude of the probability function, leaving the mean diameters unaffected. 
The function j ( d )  will yield a much narrower bubble size range and much smaller mean 
diameters than those obtained from the functionf (d) due to the division by d~. 

3. D E S C R I P T I O N  O F  T E S T  F A C I L I T Y  

Except for the instrumentation, adapted to suit the present purpose, the air-water test 
facility was largely the same as previously used by Wisman (1979). In this test loop water is 
circulated by a centrifiagal pump, whereas the air is blown once through the test section. The 
air is mixed with the water by injection through some 600 ferrules, special measures being 
taken to also ensure uniform distribution of the incoming water flowing around the ferrules. 
After this mixer and a flow straightener a pipe of 100 mm internal diameter with a straight 
mixing length of about 3 m (30 diameters) is available for further homogenization of the 
two-phase flow before it enters the test section proper. This section consists of a straight 
perspex pipe of 100 mm i.d. The test loop is equipped with a probe assembly of the design 
shown in figure 1. The probe holder is mounted on a traversing unit attached to the test 
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section about 3.5 m above the mixer. The holder enters the pipe through a leak-tight ferrule 
and traverses along a diametral chord. 

4. M E A S U R E M E N T S  

4.1. Flow conditions 
A wide range of flow velocities for each of the phases appeared desirable, as did the 

possibility to compare our results with data obtained earlier in the same test facility. Hence 
the set of 25 mixture adjustments used by Wisman (1979) and Timmermans (1979) were 
chosen as a basis for the present experiments. This set consists of five superficial liquid 
velocities: 0.9, 1.3, 1.7, 2.1 and 2.5 m/s, each combined with five nominal void fractions, 
0.25, 0.38, 0.50, 0.63 and 0.75. These adjustments are coded by a serial number consisting of 
two figures: 

--the first figure refers to the superficial water velocity: 
1 stands for the lowest (0.9 m/s) and 
5 stands for the highest velocity (2.5 m/s) 

--the second number refers to the nominal void fraction: 
1 stands for the lowest (0.25) and 
5 stands for the highest (0.75) nominal void fraction. 

Table 1 uses these serial numbers to list the 15 mixture adjustments selected for the present 
measurements. According to the flow pattern map of Hewitt and Roberts (1969) the flow 
conditions are in the plug flow region, except for a = 0.75, but close to the bubble flow 
region. The conditions for a = 0.75 are close to the churn flow regime. The observed flow 
patterns, however, differed slightly from these predicted ones, in that they ranged from 
bubble flow at low void fractions to froth flow at the highest void fraction. These minor 
differences may be attributed, e.g. to the relatively large pipe diameter used in the present 
study. 

4.2. Results 
4.2.1. Void fraction. The void fraction measurements by resistivity probe are checked by 

comparison with void fraction values obtained by a -rphoton attenuation technique. Figure 5 
shows the measured void fractions for some typical adjustments, viz. serial numbers 31 
through 35, obtained by photon attenuation and probe, respectively. The fluctuations in the 
curves representing the photon attenuation data are caused by oscillations in the 12th degree 
polynomials used to represent the measured values (cf. Wisman 1979). Hence they do not 
represent a physical phenomenon and are obviously absent from the probe data. Apart from 
the above polynomial-induced fluctuations the shapes of the two sets of curves are seen to be 
in good agreement, the agreement improving for the higher void fractions. This is borne out 
by the comparison of the cross-sectional averages shown in table 2. The deviations of <a T) 

Table 1. Flow condition da ta  

0 . 2 5  0 . 3 8  0 . 5 0  0 .63  0 .75  
<(%> 

0.9 

1.3 21 (0.6) 22 (1.2) 23 (2.7) 24 (4.9) 

1.7 31 (0.7) 32 (1.5) 33 (3.2) 34 (5.6) 

2.1 41 (0.9) 42 (1.7) 43 (3.6) 44 (6.2) 

2.5 

Note: Bracketed values refer to the superficial gas velocity. 

25 (9.9) 

35 (10.7) 

45 (12.4) 
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Figure 5. Radial distributions of void fraction. 
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Table 2. Averaged void ~actions 
I 

serial number <~p> <~y> ![ d~p [% ] 

21 0.282 0.281 0.3 

22 0.361 0.404 -10.6 

23 0.473 0.524 - 9.7 

24 0.615 0.607 1.3 

25 0.726 0.714 1.7 

31 0.242 0.273 -11.4 

32 0.363 0.406 -10.6 

33 0.505 0.520 - 2.9 

34 0.619 0.600 3.2 

35 0.724 0.731 - 1.0 

41 0.235 0.282 -16.7 

42 0.364 0.408 -10.8 

43 0.482 0.531 - 9.2 

44 0.605 0.653 - 7.3 

45 0.732 0.775 - 5.5 

with respect to ( a J  most likely originate from improper accounting for the dewetting time. 
Hence the first part of the delay time as well as signals from small bubbles or droplets are not 
taken into account. At high void fractions this effect is likely to be compensated by the effect 
of closely joining bubbles being detected as one single bubble. This is borne out by the 
decreasing values of the deviation dap shown in the table. Measurement 21 forms an 
exception to this trend, probably due to the inherent difficulty of obtaining identical gas mass 
flows at these very low set points. 

A point worth noting for the probe measurements is their applicability for high void 
fractions (cf. adjustment 35). This is due to the fact that the stainless steel tube of the probe 
holder serves as second electrode. This design obviates the need for the conducting phase (i.e. 
the liquid) to be continuous, often mentioned as prerequisite in the relevant literature. 

Although a number of references can be found in literature concerning local void fraction 
measurements, little is known about empirical correlations for predicting local void 
fractions. This is probably due to the wide variation in possible flow patterns (bubble, plug, 
annular, mist flow) and their associated void fraction distributions. For the higher void 
fractions parabolic-shaped distributions are commonly found, as in the present author's 
measurements, but for low qualities (bubble flow) the results differ. For void fractions up to 
0.5 and superficial liquid velocities lower than about 2 m/s so-called "saddle-shaped" void 
fraction distributions, showing a local minimum at the pipe centerline, are usually observed 
(cf. e.g. Nassos 1963, Malnes 1966, Petrick & Kudirka 1966, Serizawa et al. 1975 and 
Herringe & Davis 1976). In general, these investigators assumed that the void fraction 
distribution strongly depended on the inlet geometry. 

Conversely, no saddle-shaped distributions were found by the present author and by 
Wisman (1979), for measurements in the bubble and plug flow regime. Just as well, 
measurements by Thang & Davis (1979) on the structure of bubbly flows through venturis, 
performed in the same test facility of Herringe and Davis, did not show saddle-shaped 
profiles downstream of the venturi exit. Rather, these distributions all tended towards a 
pattern with a maximum at the pipe centerline, most likely due to the stronger turbulent 
mixing. 

The latter results were confirmed by Sekoguchi et al. (1981) who observed both the 
parabolic and the saddle-shape profiles after a mixing length of 140 D under the same flow 
condition in the same test section, but with different air-water mixers. They suggest that the 
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difference in bubble size distribution governs which type of profile appears. It was also found 
that the type of distribution is dependent on the magnitude of liquid velocity. 

Differences such as those just described impede the development of void fraction 
distribution functions covering a wide range of qualities. In the following an attempt is made 
to find a distribution function for the present author's results, i.e. for the void fraction range 
from about 0.25 to 0.75. Following other investigators, e.g. Bankoff (1960), Petrick & 
Kudirka (1966), Herringe & Davis (1976), a power law function: 

,10, 

is proposed, similar to that describing the velocity profiles in single-phase turbulent pipe 
flow. 

Although amax in [10] is available from the measured values, use is made of the 
cross-sectionally averaged values of all void fraction data to determine the power 1 In, since 
this not only improves the approximation, but also follows engineering practice, where the 
averaged value is known rather than a maximum value. The cross-sectional averaged void 
fraction is obtained from the definition: 

1 fa dA 

with a according to [10]. Elaboration yields the well-known formula: 

(or) 
20dma x 

(I/n + l)(I/n + 2)" 

Substituting [10] yields 

a = ( a ) l ( ~ +  1 ) ( ~ + 2 ) ( 1  __~)l / , .  [11] 

Using this equation for all measured void fraction distributions, the following best fit is 
obtained for the power 1/n: 

'n (: 
Figure 6 shows the measured void fractions (taken from figure 5) compared with the 
approximation by the power law of [ 11 ] and [ 12], The agreement is excellent except near the 
centerline where the power law shape is slightly too peaked. For high values of the 
cross-sectionally averaged void fraction local void fractions in the vicinity of the centerline 

become greater than 1, which is physically impossible. This is further elaborated in table 3 
where it is shown that a~ax starts to exceed 1 for ( a )  > 0.7. For (or) equals 1, 1/n becomes 
zero, hence a = ( a ) = 1, which is physically correct. It should be stressed that application of 
[ 12] is limited to the range of experimental conditions shown in table 1. 

Although the superficial liquid velocity ranged from 1.3 to 2.1 m/s in our measurements, 
no dependence on this velocity could be detected. This also holds for the measurements of 
Wisman. These findings are at variance with the results of Petrick & Kudirka (1966) who 
approximated their measured data by 

I 0.024 Us2/3, [13] 
n (a) 
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<12,> 

Table 3. Power law data 

n from n from 

max equation (12) *) equation (13) 

0.0 0.0 

0.I 0.202 

0.2 0. 386 

0.3 0.550 

0.4 0.695 

O.5 O.82O 

0.6 0.923 

0.7 i. 003 

0.8 1.055 

0.9 1.073 

0.95 1.060 

i .0 1.000 

(1.62) 

(1.75) 

1.90 

2.09 

2.32 

2.64 

3.09 

3.77 

5.01 

(8.14) 

(13.23) 

(~) 

0 . 0  

1.32 

2 . 6 5  

3 .97  

5 . 3 0  

6 . 6 2  

7 . 9 2  

9 . 2 7  

10 .60  

11 .92  

12 .59  

13.25 

*) Bracketed values refer to <a> beyond the range 
investigated by the present author. 

where the superficial velocity usl is given in ft/s. This equation predicts much flatter void 
fraction profiles than [ 12], as illustrated in the last column of table 3 showing the value of n 
for usl = 1.7 m/s. This value for u~t applies for the void fractions shown in figure 6 (cf. table 
1). The discrepancy in the power 1/n may due to the difference in turbulent mixing between 
the two test sections. No further explanation is offered because of the author's ignorance of 
the details of Petrick and Kudirka's test loop. 

4.2.2. Bubble velocity. Figure 7 shows the measured velocities of adjustments 31 
through 35. The shape of the velocity profiles is seen to change from fiat at low void fractions 
(number 31) to more or less sine shaped at high void fractions (number 35), which appeared 
to be independent of the superficial liquid velocity (cf. Van der Welle 1983). This change is 
to be expected since the flow will be annular at high void fractions; for this mode of flow the 
velocity at the centerline is much higher than in the liquid layer. An unlikely velocity profile 
is seen for the high flow adjustment 35, where the shape is flattened in the core region. The 
explanation is to be found in the combination of insufficient sampling frequency with the fact 
that the correlation function is obtained as a histogram. The former causes a shift of the top 
of the correlation function to lower values of time delay (i.a.v. to lower values of j, cf. figure 
4), so that the resolution decreases. This leads to an increasing gap between the different 
velocity levels, which are obtained from the j values. Obviously the velocities in the core 
region do not come close enough to the next velocity level to cause a shift in thej value, hence 
the profile is flattened. It is clear that these velocities are subject to large errors. 

Verification of the measured velocities was undertaken by comparing the averaged 
values ~ p  and ~Gy, based on the probe measurements and the measured gas volume flow 4,vg, 
respectively, where ~cp is defined as 

~ / a u ~  dA 

(a)A [14] 

and 

- ~v8 
UW (a)A" [151 
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N.B. It is obvious that ~o, which may also be written: 

( OlU G ) 
uo [16] 

will differ from the cross-sectional average of the local velocities: 

1 
(uo) = -A fJA ucdA [171 

in value as well as in definition, as (auo) ~ (a) (uo). Hence the velocity uol computed 
from the measured gas volume flow according to [15] should not be compared with (uop) 
computed from [17]. 

Furthermore the deviation of ~ap with respect to ~oy is computed: 

d-5~p ucv-- uof 100%. [18] 
uGf 

All values are plotted against ( a )  in figure 8. The negative deviation of ~op with respect to 
~of is seen to rise steeply with increasing void fraction. Adjustments 21 and 31 show a strong 
deviation from the general trends, which can be attributed to difficulties encountered with 
the adjustment and metering of these low gas flows as well as to the somewhat different flow 
pattern with respect to the other measurements. It was observed that areas of bubble flow 
were alternating with gas plugs moving at a different velocity and causing some reverse flow, 
which is not taken into account during the correlation procedure, so that in these cases the 
detected bubble velocity is bound to differ from the average gas velocity. The deviation of 
measurement 45 from the general trend is attributed to the measurement errors in the 
velocities discussed above. 

The increasing negative values of d~cp for increasing void fractions are to be expected for 
a technique which measures the velocity of the discrete phase. This can be made plausible 
with the aid of figure 9, where the two probe signals are shown for both bubble and mist flow, 
i.e. for low and high void fraction, respectively. For bubble flow the signals are mainly high 
and the signal drops represent bubbles, while in case of droplet flow the signals are mainly 
low and peaks are caused by droplet contact. Correlation of both signals yields the gas 
velocity for bubble flow, whereas it will tend to predict the droplet velocity in case of mist 
flow. It is obvious that a continuous shift in the detected velocity from pure gas to a kind of 
liquid velocity will take place as the void fraction varies from low to high. Hence the 
measured velocity should be considered an interface velocity rather than a gas velocity. This 
is borne out by figure 10 in which d~,, is plotted against ( a ) ,  where ~,~ is defined (rather 
arbitrarily) as 

B 

and 

d~m ~cp - ~,, 100%. [ 19] 
~m 

For void fractions below about 0.55 it is found that ucp > urn, because uop is closer to the gas 
velocity, while for ( a )  greater than about 0.55 ~op < ~,~ because ~Gp is closer to the droplet 
velocity. The deviations dum plotted in figure 10 may be approximated by a straight line, 
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Figure 8. Deviation in measured velocity as a function of ( a ) .  

according to a least squares fit. It seems reasonable to suppose that these lines should be 
more or less symmetrical with respect to the point ( a )  = 0.5, i.e. the deviations at ( a )  = 0 
and ( a )  = 1 should be about equal with opposite sign. The figures more or less support this 
assumption. Of course the validation of the statement that an interface velocity is measured 
rather than a gas velocity can only be approximate, as use is made of averaged values for the 
velocities. The determination of any local mixture or interface velocity is impossible as no 
local liquid velocities are known. 

From the considerations given in the preceding section it appears reasonable to 
approximate the distribution function of the measured velocities by a power law analogous to 
[ 11 ], yielding 

1 
[20] 
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o r o . ,  , ,  . . . . . . . . . . .  , _ _  

bubble or d r o p l e t  

Figure 9. Probe signals for bubble and mist flow. 

passing bubbLe pass ing d r o p l e t  
. . . . .  Liquid 

gas 
Liquid 

gas 

With the aid of the measured data the following correlation is established for the power 
1/n: 

1 1 

n 10 (1 - ( a ) ) "  
[21] 

Again no dependence on the superficial liquid velocity was found, though such dependence 
might be expected from single-phase flow results. It should be emphasized that its absence 
may be simply due to insufficient accuracy of the available measurement data. Equation 
[21] is therefore merely suggested as a rule of thumb for a "rough-and-ready" approxima- 
tion of the distribution shape. 

In figure ? the measured velocities are approximated by the power law of [20] and [21]. 
A good agreement is seen between the measured values and the proposed distribution 
function. At low void fractions the shape is very flat (for adjustment number 31 with a ~. 
0.25, [21] yields n = 7.5), but this shape becomes less flat with increasing void fraction (for 
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measurement 35, with a ~ 0.7, n = 3). Adjustment 35 shows a certain asymmetry in 
measured values, most likely caused by disturbance of the flow by the probe holder. 

I t  should be noted that very flat shapes at low void fractions are also found by other 
investigators, e.g. Malnes, Serizawa and Herringe. For a = 0.1, e.g. [21] yields n = 9, which 
corresponds to the findings of Herringe & Davis. 

Equation [21] yields incorrect results for a = 0 and a > 0.9, viz. n = 10 instead of about 
7 for a = 0 (single-phase flow) and n = 0 for a = 1. Despite these imperfections the use of 
[21 ] is recommended as a practical rule of thumb for two-phase flows, which is of course only 
applicable within the range of experimental conditions shown in table 1. 

4.2.3. Bubble diameter. In the absence of a predetermined idea on the relevance of the 
various mean bubble diameters defined in the Appendix, all eight diameters are plotted 
against the radius of the pipe. 

Figure 11 shows the bubble diameters for adjustments 31 through 35. The dented shapes 
of the curves in this figure are attributed to the sample frequency, which was based on the 
requirement for velocity measurements and found inadequate for the determination of 
bubble size (cf. Van der Welle 1983). The resulting errors in the most frequent diameter 
(found at the top of the diameter frequency distribution), are about 20% to 40%. 

The other diameters are in general somewhat less dented, i.e. the deviations are 
smoothed, as those diameters are obtained by arithmetical operations. In the plot of 
measurement 31 the curves of dg,, and dso are seen to coincide for the most part. It is known 
from theory that the log-normal distribution of particle sizes has the property that dg,, equals 
ds0 (see, e.g. Masters 1972). Although this fact may not be stated in reverse, it is quite likely 
that the diameter distribution function has indeed a log-normal shape. At the higher 
adjustments de,. is still roughly equal to dso in the wall region, but differs from dso in the core 
region. This is by no means surprising as in that region the flow is far from bubbly and the 
detected diameters are hence of doubtful physical meaning. 

Another interesting comparison is that of da,. with d,,,  who should be equal as explained 
in the Appendix. Figure 11 shows a generally large discrepancy between both diameters, d, ,  
being 2 to 3 times greater than d~,., except for the region close to the wall, were indeed d,,, -~ 
d~,. The deviation between dam and d, ,  is again due to insufficient sampling frequency, 
resulting in too low counts as successive bubbles are detected as one large bubble. The effect 
is twofold, viz. d, ,  becomes too large (cf. [A6]) and the diameter distribution function shifts 
to higher diameter values. As the number of classes of this function is limited to 25, the 
additional consequence is a peak at the highest (25th) class, where all diameters greater than 
class 24 are accumulated. This means that the computed mean diameters (cf. the appendix) 
will tend to lower values as no class greater than 25 is taken into account. These two effects 
(shift to higher diameter values and a limit on the maximum diameter) apparently more or 
less cancel out when the diameters dam ,dg,., dr,. and ds are computed, hence these values can 
be considered fairly reliable. For the area in which d,,  ~ da,. it appeared from the probability 
density functions that only a small number of bubbles is present in class 25, thus confirming 
the above remarks on sampling frequency and number of classes of the distribution 
function. 

As mentioned in subsection 2.4.3 the results thus obtained only hold for detected bubbles. 
An impression of the spectrum of all existing bubbles per unit area is obtained from equation 
[9]. The resulting diameter values for the same measurements 31 through 35 are shown in 
figure 12, from which it is seen that the diameters are significantly reduced. It is obvious that 
the diameter distribution function will be strongly skewed to the left. The top of this function 
is now mostly found in class 1, hence the first part of the function has a poor resolution. The 
influence of the sampling frequency is seen in some curves, viz. for measurement 32 at 
position _+0.4 R and for measurement 33 at position _+0.8 R. At these locations the sample 
frequency was doubled in order to obtain reliable velocity measurements, yielding a sudden 
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Figure 1 I. Radial distribution of detected bubble diameters. 
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Figure 11 C. 

decrease in bubble diameters. Again the diameters dgm and dso are roughly the same, with dg,~ 
now slightly higher than dso. 

Some sort of verification of the measured bubble diameters was attempted by compari- 
son with theoretically predicted diameters. These are obtained from a model suggested by 
Wisman (1979), which is based on a model for drop diameters given by Hinze (1955). While 
the reader is referred to the original text for a full description of the model, the resulting 
equations will be given here for the sake of completeness. The model yields an expression for 
the bubble diameter: 

ab = ('2 S)PL//0.6 ,-0, [22] 

in which a is the surface tension and PL is the density of the liquid. For the actual air-water 
flows the critical Weber number Wecr = 2.43. An expression for the energy dissipation ~ was 
obtained by Wisman from the mechanical energy balance for a nonaccelerating flow on the 
assumption that the dissipation of turbulence energy in the flow is equal to its production. He 
further stated that the production of turbulence energy is due to the relative movement of the 
phases, i.e. the drag force plus the wall friction. The mechanical energy equation is obtained 
by multiplying the gas momentum equation by ua, the liquid momentum equation by uL and 
adding the products. The turbulence energy dissipation then yields 

- -  U L F 0 (UG UL) + - : -  
fr 

(1 - OOPL 
[23] 

in which Fo is the drag force and (dp/dz)rr represents the pressure drop due to wall friction. 
As one-dimensional equations are used, the model predicts one-dimensionally averaged 
diameters; these were computed for all measurements of concern and are listed in table 4. 
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Figure 12 C. 

The predicted diameters compare reasonably well with the Sauter mean diameter, except 
for high void fractions. This is illustrated in figure 13, in which two Sauter diameters per 
adjustment are plotted, viz. a high and a low value (cf. also table 4). The low values are 
obtained by neglecting the last (25th) class of the distribution function as these diameters 
are somewhat suspect for the reason stated earlier. The deviation between predicted and 
measured diameters is significant at higher void fractions. This is highly plausible as in this 
case the flow will be annular rather than bubbly, which means that the model looses its 
physical basis and that the detected "bubble" diameter is rather a slug diameter. It is thus 

Table 4. Bubble diameter data 

serial dmode I <d > <d > Sg s s rain dispersion 
number 

21 3.71 2.71 2.29 2.55 0.41 

22 2.58 2.87 2.37 2.41 O. 38 

23 2.08 2.47 1.98 2.24 0.35 

24 1.72 3.25 2.38 2.40 0.38 

25 1.23 4.76 3.17 2.03 0.31 

31 3.20 2.93 2.40 2.76 0.44 

32 2.65 2.35 1.99 2.56 0.41 

33 1.86 2.78 2.14 2.50 0.40 

34 1.37 3.65 2.60 2.19 0.34 

35 0.99 6.84 4.41 2.00 0.30 

41 2.40 2.48 2.14 2.45 0.39 

42 1.91 2.60 2.19 2.26 0.35 

43 1.48 3.01 2.32 2.05 0.31 

44 1.17 4.26 3.12 2.14 0.33 

45 0.91 8.13 5.40 1.89 0.28 
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Figure 13. Bubble diameters versus void fraction. 

seen that the model yields a good prediction of the Sauter mean diameter in bubbly flow (a < 
ca. 0.5) for the spectrum of all existing bubbles. If only the distribution of detected bubbles is 
known, i.e. no transformation according to [9] is performed, the model predicts the 
arithmetic mean diameter. Equation [9] yields 

j ( d , ) =  ~ f o r i =  1 (1)n. 

If we denote the Sauter diameter from the j function (existing diameters) as d*, definition 
[A4] yields 

d~j(d,) Ad, ~ d~f(d,) Ad,/d~ ~ d,f(d,) Ad, 
d* = i-i = i=1 ~ i-1 [24] 

i - I  i - 1  i - I  

which is the definition of dam for t h e f  function (detected diameters). 

5. SUMMARY AND CONCLUSIONS 

The present measurements in two-phase air-water flows are complementary to the 
results found in literature in that their ranges of  void fractions and superficial liquid 
velocities extend up to 0.75 and 2.1 m / s ,  respectively, thus covering various flow patterns. 
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Reliable values were obtained for the local void fraction over the entire range 0 _< a _< 1. 
The distribution of the void fraction can, with fair accuracy, be described by a power law. 

The resistivity probes used measure the velocity of the interface between the conducting 
and nonconducting phases. The shape of this interface velocity is well fitted by a power law, 
the exponent of which varies more strongly than for single-phase pipe flow. 

The spectrum of measured bubble sizes can be converted into a spectrum of existing 
bubble sizes. It appears that the Sauter mean diameter computed from this existing 
spectrum is reasonable well predicted by the energy balance based model [22], provided the 
measurements refer to bubbly flow (i.e. void fractions up to 0.5). 

The accuracy of the resistivity probe measurement technique should be improved in 
order to be able to measure higher velocities and to determine reliable bubble size 
distributions. Such improvement can be achieved by a decreased distance between the probe 
tips, combined with a more than proportional increase in sampling frequency. The data 
processing requirements resulting from the above recommendations suggest the use of a 
dedicated minicomputer instead of a microprocessor. 
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APPENDIX 

Definitions of bubble diameter 
The following definitions for mean diameter have i.a. been reported in literature, mainly 

in the field of drop size distributions in sprays (cf. e.g. Mugele & Evans 1951), and are used 
here in the evaluation of bubble diameter data. 

Most frequent diameter d,,f. This diameter is found at the top of the probability density 
function of diameters. A proper determination of this top requires a high sample frequency, 
even one substantially higher than the sampling frequency used for the velocity measure- 
ments. For the maximum sample frequency of 16 kHz significant errors in the determination 
of the most frequent diameter can be expected. 

Arithmetic mean diameter darn This diameter is defined as the sum of the diameters of 
the separate bubbles divided by the number of bubbles, hence: 

~-~ d i f  (di) Adi 
darn i=l 

n 

)-~.f (di) Adi 
[A1] 

where n = number of classes, d; = the diameter of the ith class, f(di)  = the number of 
bubbles in that class, Ad, = the size-class increment, which is uniform in our case. 

Geometric mean diameter dr.. This diameter is defined as the nbth root of the product of 
the diameters of the nb measured bubbles, which definition can conveniently be described in 
terms of logarithms as 

~ l n  di f  (dl) Adl 
In dgrn = ,-l, [A2] 

Y" f (d,) Ad, 
i - l  
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Volume mean diameter dvm. This diameter is based on the volume rather than on the 
number of bubbles: 

[ n \ I]3 

/ 

Volume-surface or Sauter diameter ds. This diameter is mainly used in the field of mass 
transfer, as the volume represents the concentration of the material and the surface its 
contact area. The definition yields 

~ .  d~ f (d,) Ad, 
ds = ,-1 [A4] 

d2 f (d,) Ad, 
i-l 

Median diameter dso. This diameter is defined as the diameter above or below which 50% 
of the number of bubbles lie, and is thus easily obtained from the cumulative distribution 
function. If the probability density function is a log-normal distribution the median diameter 
corresponds to the geometric mean diameter. In the same way as the definition of dso other 
diameters can be defined, e.g. d84, which corresponds to the diameter one standard deviation 
distant from the median diameter, provided that the bubble diameter density function can be 
represented by log-normal distribution. 

Diameter, based on void fraction and bubble frequency d~,. All the above mentioned 
mean diameters derive from bubble diameter distributions. It is also possible, however, to 
obtain a mean bubble diameter without the need to classify the various measured diameters, 
viz. from the measured void fraction and bubble frequency. The averaged number of samples 
per bubble ~ equals the total number of samples N multiplied by the void fraction o/, yielding 
the number of samples in all bubbles, divided by the number of bubbles nb; hence: 

N o /  
= [A51 nb" 

After substituting [A5] into [7] the averaged chord length i yields 

N a  uG 
f n b . [A6] 

In subsection 2.4.3 it is made plausible that the average bubble diameter is equal to this 
average chord length. As an averaging procedure is performed over the number of bubbles, it 
is obvious that the mean diameter thus obtained is identical to the arithmetic mean diameter 
dam; the results obtained by [A6] should therefore be compared with the results of [A1]. 

N O M E N C L A T U R E  

A cross-soctional area 
a, b probe signals 

c concentration 
D pipe diameter 
d diameter, deviation 
F volume force 
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Fab cross-correlation function of signals a and b 
f frequency 

f ( d )  probability function of detected bubble diameters 
g(l) probability function of measured chord lengths 

i, j number 
j (d)  probability function per unit area 

l bubble chord length 
M number of shifts 
N total number (bubbles, samples) 
p pressure 

Rab polarity correlation function of signals a and b 
r radius 
s standard deviation 
T time 
t time, period 
u velocity 

We Weber number (pu2d)/tr 
x coordinate 
z axial coordinate 
a void fraction 

energy dissipation 
p density 

surface tension 
~- time delay 

~b,. mass flow rate 
q~v volume flow rate 

Subscripts 
a arithmetic 
b bubble 

cr critical 
D drag 
fr frictional 
G gas 
g geometric 
L liquid 
m mean value 
p probe 
s Sauter diameter 

sl superficial liquid 
v volumetric 
3' 3' ray attenuation 
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